985 resultados para Antipsychotic drugs


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selective polypharmacology, where a drug acts on multiple rather than single molecular targets involved in a disease, emerges to develop a structure-based system biology approach to design drugs selectively targeting a disease-active protein network. We focus on the bioaminergic receptors that belong to the group of integral membrane signalling proteins coupled to the G protein and represent targets for therapeutic agents against schizophrenia and depression. Among them, it has been shown that the serotonin (5-HT2A and 5-HT6), dopamine (D2 and D3) receptors induce a cognition-enhancing effect (group 1), while the histamine (H1) and serotonin (5-HT2C) receptors lead to metabolic side effects and the 5-HT2B serotonin receptor causes pulmonary hypertension (group 2). Thus, the problem arises to develop an approach that allows identifying drugs targeting only the disease-active receptors, i.e. group 1. The recent release of several crystal structures of the bioaminergic receptors, involving the D3 and H1 receptors provides the possibility to model the structures of all receptors and initiate a study of the structural and dynamic context of selective polypharmacology. In this work, we use molecular dynamics simulations to generate a conformational space of the receptors and subsequently characterize its binding properties applying molecular probe mapping. All-against-all comparison of the generated probe maps of the selected diverse conformations of all receptors with the Tanimoto similarity coefficient (Tc) enable to separate the receptors of group 1 from group 2. The pharmacophore built based on the Tc-selected receptor conformations, using the multiple probe maps discovers structural features that can be used to design molecules selective towards the receptors of group 1. The importance of several predicted residues to ligand selectivity is supported by the available mutagenesis and ligand structure-activity relationships studies. In addition, the Tc-selected conformations of the receptors for group 1 show good performance in isolation of known ligands from a random decoy. Our computational structure-based protocol to tackle selective polypharmacology of antipsychotic drugs could be applied for other diseases involving multiple drug targets, such as oncologic and infectious disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanisms of action of several atypical antipsychotic drugs have been examined at the D-2 dopamine receptor expressed in CHO cells. The drugs tested were found to exhibit inverse agonist activity at the D-2 dopamine receptor based on their effects to potentiate forskolin-stimulated cyclic AMP (cAMP) accumulation. Each of the antipsychotic drugs tested (clozapine, olanzapine, quetiapine and risperidone) increased cAMP accumulation to the same extent. The increase in cAMP was also similar to that seen with typical antipsychotic drugs. Inverse agonism at the D-2 dopamine receptor seems, therefore, to be a property common to all classes of antipsychotic drugs. The effect of sodium ions on the binding of the drugs to the receptor was also assessed. Each of the atypical antipsychotic drugs tested here bound with higher affinity in the absence of sodium ions. Previous studies have shown that some antipsychotic drugs are insensitive to sodium ions and some bind with higher affinity in the presence of sodium ions. Given that all of these antipsychotic drugs are inverse agonists, it may be concluded that this sodium ion sensitivity is unrelated to mechanisms of inverse agonism. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The antipsychotic drugs had been assumed to act as antagonists at D-2 dopamine receptors but recently these drugs have been shown to possess inverse agonist properties at this receptor. Inverse agonism may be demonstrated from the ability of these drugs to potentiate forskolin-stimulated cAMP accumulation or to suppress agonist-independent [S-35]GTPgammaS binding. The antipsychotic drugs tested generally appear as full inverse agonists in these assays regardless of chemical or therapeutic class. The mechanism of inverse agonism of the antipsychotic drugs is still unclear but may involve stabilisation of the ground state of the D-2 receptor. (C) 2003 Elsevier Science B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE: Both psychotropic drugs and mental disorders have typical signatures in quantitative electroencephalography (EEG). Previous studies found that some psychotropic drugs had EEG effects opposite to the EEG effects of the mental disorders treated with these drugs (key-lock principle). OBJECTIVES: We performed a placebo-controlled pharmaco-EEG study on two conventional antipsychotics (chlorpromazine and haloperidol) and four atypical antipsychotics (olanzapine, perospirone, quetiapine, and risperidone) in healthy volunteers. We investigated differences between conventional and atypical drug effects and whether the drug effects were compatible with the key-lock principle. METHODS: Fourteen subjects underwent seven EEG recording sessions, one for each drug (dosage equivalent of 1 mg haloperidol). In a time-domain analysis, we quantified the EEG by identifying clusters of transiently stable EEG topographies (microstates). Frequency-domain analysis used absolute power across electrodes and the location of the center of gravity (centroid) of the spatial distribution of power in different frequency bands. RESULTS: Perospirone increased duration of a microstate class typically shortened in schizophrenics. Haloperidol increased mean microstate duration of all classes, increased alpha 1 and beta 1 power, and tended to shift the beta 1 centroid posterior. Quetiapine decreased alpha 1 power and shifted the centroid anterior in both alpha bands. Olanzapine shifted the centroid anterior in alpha 2 and beta 1. CONCLUSIONS: The increased microstate duration under perospirone and haloperidol was opposite to effects previously reported in schizophrenic patients, suggesting a key-lock mechanism. The opposite centroid changes induced by olanzapine and quetiapine compared to haloperidol might characterize the difference between conventional and atypical antipsychotics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antipsychotic drug treatment of schizophrenia may be complicated by side effects of widespread dopaminergic antagonism, including exacerbation of negative and cognitive symptoms due to frontal cortical hypodopaminergia. Atypical antipsychotics have been shown to enhance frontal dopaminergic activity in animal models. We predicted that substitution of risperidone for typical antipsychotic drugs in the treatment of schizophrenia would be associated with enhanced functional activation of frontal cortex. We measured cerebral blood oxygenation changes during periodic performance of a verbal working memory task, using functional MRI, on two occasions (baseline and 6 weeks later) in two cohorts of schizophrenic patients. One cohort (n = 10) was treated with typical antipsychotic drugs throughout the study. Risperidone was substituted for typical antipsychotics after baseline assessment in the second cohort (n = 10). A matched group of healthy volunteers (n = 10) was also studied on a single occasion. A network comprising bilateral dorsolateral prefrontal and lateral premotor cortex, the supplementary motor area, and posterior parietal cortex was activated by working memory task performance in both the patients and comparison subjects. A two-way analysis of covariance was used to estimate the effect of substituting risperidone for typical antipsychotics on power of functional response in the patient group. Substitution of risperidone increased functional activation in right prefrontal cortex, supplementary motor area, and posterior parietal cortex at both voxel and regional levels of analysis. This study provides direct evidence for significantly enhanced frontal function in schizophrenic patients after substitution of risperidone for typical antipsychotic drugs, and it indicates the potential value of functional MRI as a tool for longitudinal assessment of psychopharmacological effects on cerebral physiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Specific antagonists of central dopaminergic receptors constitute the major class of antipsychotic drugs (APD). Two principal effects of APD are used as criteria for the pre-clinical screening of their antipsychotic action: (i) inhibition of basal and depolarization-induced activity of mesolimbic dopaminergic neurons; (ii) antagonism of the locomotor effects of dopaminergic agonists. Given that glucocorticoid hormones in animals increase dopamine release and dopamine-mediated behaviors and that high levels of glucocorticoids can induce psychotic symptoms in humans, these experiments examined whether inhibition of endogenous glucocorticoids might have APD-like effects on mesolimbic dopaminergic transmission in rats. It is shown that suppression of glucocorticoid secretion by adrenalectomy profoundly decreased (by greater than 50%): (i) basal dopaminergic release and the release of dopamine induced by a depolarizing stimulus such as morphine (2 mg/kg, s.c.), as measured in the nucleus accumbens of freely moving animals by microdialysis; (ii) the locomotor activity induced by the direct dopaminergic agonist apomorphine. The effects of adrenalectomy were glucocorticoid specific given that they were reversed by the administration of glucocorticoids at doses within the physiological range. Despite its profound diminution of dopaminergic neurotransmission, adrenalectomy neither modified the number of mesencephalic dopaminergic neurons nor induced gliosis in the mesencephalon or in the nucleus accumbens, as shown by tyrosine hydroxylase and glial fibrillary acidic protein immunostaining. In conclusion, these findings suggest that blockade of central effects of glucocorticoids might open new therapeutic strategies of behavioral disturbances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The peptide transmitter neurotensin (NT) exerts diverse neurochemical effects that resemble those seen after acute administration of antipsychotic drugs (APDs). These drugs also induce NT expression in the striatum; this and other convergent findings have led to the suggestion that NT may mediate some APD effects. Here, we demonstrate that the ability of the typical APD haloperidol to induce Fos expression in the dorsolateral striatum is markedly attenuated in NT-null mutant mice. The induction of Fos and NT in the dorsolateral striatum in response to typical, but not atypical, APDs has led to the hypothesis that the increased expression of these proteins is mechanistically related to the production of extrapyramidal side effects (EPS). However, we found that catalepsy, which is thought to reflect the EPS of typical APDs, is unaffected in NT-null mutant mice, suggesting that NT does not contribute to the generation of EPS. We conclude that NT is required for haloperidol-elicited activation of a specific population of striatal neurons but not haloperidol-induced catalepsy. These results are consistent with the hypothesis that endogenous NT mediates a specific subset of APD actions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores the legal position of the off-label prescription of antipsychotic medications to people with dementia who experience behavioural and psychological symptoms of dementia (BPSD). Dementia is a challenging illness, and BPSD can be very difficult for carers to manage, with evidence that this contributes to carer strain and can result in the early institutionalisation of people with dementia. As a result, the prescription of antipsychotic and other neuroleptic medications to treat BPSD has become commonplace, in spite of these drugs being untested and unlicensed for use to treat older people with dementia. In recent years, it has become apparent through clinical trials that antipsychotic drugs increase the risk of cerebrovascular accident (stroke) and death in people with dementia. In addition, these types of medication also have other risk factors for people with dementia, including over-sedation and worsening of cognitive function. Drawing on recent questionnaire (n = 185), focus group (n = 15), and interview (n = 11) data with carers of people with dementia, this paper explores the law relating to off-label prescription, and the applicability of medical negligence law to cases where adverse events follow the use of antipsychotic medication. It is argued that the practice of off-label prescribing requires regulatory intervention in order to protect vulnerable patients. © The Author [2012]. Published by Oxford University Press; all rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rationale Although the advent of atypical, second-generation antipsychotics (SGAs) has resulted in reduced likelihood of akathisia, this adverse effect remains a problem. Extrapyramidal adverse effects are associated with increased drug occupancy of dopamine 2 receptors (DRD2). The A1 allele of the DRD2/ANKK1,rs1800497, is associated with decreased striatal DRD2 density. Objectives The aim of this study was to identify whether the A1(T) allele of the DRD2/ANKK1 was associated with akathisia (measured with the Barnes Akathisia Rating Scale) in a clinical sample of 234 patients treated with antipsychotics. Results Definite akathisia (a score≥ 2 for the global clinical assessment of akathisia) was significantly less common in subjects prescribed SGAs (16.8 %) than those prescribed FGAs (47.6%), p<0.0001. Overall, 24.1% of A1+ (A1A2/A1A1) patients treated with SGAs had akathisia compared to 10.8% of A1- (A2A2) patients. A1+ (A1A2/A1A1) patients administered SGAs also had higher global clinical assessment of akathisia scores than A1- subjects (p=0.01). SGAs maintained their advantage over FGAs regarding akathisia even in A1+ patients treated with SGAs. Conclusions These results strongly suggest that A1+ variants of the DRD2/ANKK1 Taq1A allele confer risk for akathisia in patients treated with SGAs and may explain inconsistencies across prior studies comparing FGAs and SGAs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction: Antipsychotic drugs date back to the 1950s and chlorpromazine. Soon after, it was established that blockade of dopamine and, in particular, the D-2 receptor was central to this effect. Dopamine continues to represent a critical line of investigation, although much of the work now focuses on its potential in other symptom domains. Areas covered: A search was carried out for investigational drugs using the key words `dopamine', `schizophrenia' and `Phase III' in an American clinical trial registry (clinicaltrials.gov), published articles using the National Library of Medicine's PubMed database, and supplemented results with a manual search of cross-references and conference abstracts. Drugs were excluded that were already FDA approved. Expert opinion: There remains interest, albeit diminished, in developing better antipsychotic compounds. The greatest enthusiasm currently centres on dopamine's role in negative and cognitive symptom domains. With theories conceptualising hypodopaminergic activity as underlying these deficits, considerable effort is focused on drug strategies that will enhance dopamine activity. Finally, a small body of research is investigating dopaminergic compounds vis-a-vis side-effect treatments. In domains beyond psychosis, however, dopamine arguably is not seen as so central, reflected in considerable research following other lines of investigation.